Dynamic Tutorials: Creating Readily-Available Worked Examples for Novice Programmers

Modern professional web development relies heavily on front-end frameworks, such as
AngularJS, and techniques designed to augment and simplify the capabilities of native web
technologies. Although these tools and techniques provide helpful abstractions for experienced
developers, their complex interaction protocols present a steep learning curve. Learners must not
only understand #ow to use features of a particular technology, but also when to apply usage
patterns and techniques to specific cases. For example, an intermediate web developer interested
in copying a particular Facebook feature might investigate the underlying source code. However,
professional websites frequently obfuscate their production code, use highly-complex application
architectures, and generally provide little readability for learners unfamiliar with the code base.
Consequently, intermediate learners find it difficult to connect a website’s source code to
outcomes on the page -- a knowledge gap preventing the accumulation of professional-level
techniques. Drawing from professional examples, we will help intermediate web developers fill
their knowledge gaps so they are able to implements certain features and learn the best design
patterns that are used by professionals. We propose to create a system called Dynamic Tutorials,
where we will create tutorials about front-end development techniques, such as grid systems and
the ideas of models, views, and controllers, using professional examples and present them in a
two different tutorials. Both tutorials will serve to demonstrate the same high-level concept or
programming “design pattern,” but the individual tutorials will implement these concepts in
different concrete ways. Using our application, Dynamic Tutorials, we will then conduct user
studies to determine the effectiveness of our learning application. We will research whether
multiple examples teaching core concepts of front-end frameworks will facilitate analogical
encoding. Both of us are deeply interested in researching the intersections of computer science
and learning sciences; as teaching assistants and human-computer interaction researchers,
Dynamic Tutorials present a niche opportunity to draw from our interdisciplinary backgrounds.

While existing online tutorials demonstrate the “how to do,” most do not provide the
“when to do” intuition necessary for effective knowledge mapping to related contexts. This past
fall and winter, we conducted preliminary needfinding interviews with 10 programmers ranging
from novice to intermediate. In these interviews, learners repeatedly expressed frustration with
the overly-focused nature of existing web tutorials. They found the example scenarios too
contrived, and noted that instructions tended to focus on low-level tasks instead of the
generalizable reasoning behind each operation. Even when tutorials evade these pitfalls, learners
tend to encode information in a context-specific manner when learning from a single case
(Gentner & Rattermann, 1991). Conversely, explicitly comparing two different examples
facilitates analogical encoding. Analogical encoding describes the promotion of structural
transfer via comparison of two partially-understood examples. Multiple examples of the same
principle and technique make common relational structures more salient, and can facilitate
deriving a schema, which in turn enables the learner to subsequently apply the acquired
knowledge to similar problems (Gentner, Loewenstein, & Thompson, 2004; Gick & Holyoak,
1983; Catrambone & Holyoak, 1989).

Although these observations are well-documented in the CS+LS (computer science and
learning sciences) field, our proposed work builds upon the existing literature by focusing on the
needs of intermediate learners specifically. Interactive web platforms such as Codeacademy
provide a rich array of learning environments for novice learners with zero prior programming
experience. However, once a learner has developed the fundamentals, next-step resources
become far scarcer. Indeed, the vast majority of existing research in the CS+LS domain focuses



Dynamic Tutorials: Creating Readily-Available Worked Examples for Novice Programmers

on novice programmers with no prior technical background. Most of the state-of-the-art learning
affordances and findings have been designed with a very different user class in mind, and
translate poorly to filling the knowledge gap for intermediate programmers. Prior research has
documented learning behaviors typical of intermediate programmers, and shown the benefits of
integrating example code “snippets” into their workflows (Brandt et al., 2009; 2010). While
these contributions are preliminary findings, they provide the basis for our current proposal. We
believe our work can augment the CS+LS domain by specifically targeting intermediate learners,
and further understanding their unique needs vis-a-vis the widely-studied class of novice
learners.

Dynamic Tutorials can roughly be thought of as “educational faceplates” for the internet,
and differ from existing tutorials in three ways. Web-sourcing of example material. Currently,
tutorial authors must build their own sandbox environments to demonstrate a general concept.
For instance, someone interested in authoring a tutorial for auto-completing search bars must
create a mock website with a “dummy” search bar and mock data for autocomplete. This process
is time-consuming, and often results in a contrived and narrow product (in turn promoting the
learner’s contrived mental schema). Harnessing the vast body of existing websites to populate
worked examples would provide a huge amount of learning material. For example, learners are
already familiar with sites they use, such as Facebook, and using Facebook’s source code as part
of the tutorial, provides context to the learner. Repetition of concepts to promote analogical
encoding. Existing tutorials demonstrate one principle in one way. However, learners empirically
develop more robust knowledge transfer when comparing two or more examples of the same
technique. Because other tutorials use different approaches and technology stacks, learners
cannot easily reinforce their newly-acquired knowledge within a different context. One Dynamic
Tutorial could theoretically be used to generate many different examples of the programming
technique in question. Learning how Facebook is creating a search feature and learning how
Twitter creates a search feature, provides learners with two different examples in context to
better encode what they are learning. Authentic learning through real-world examples. Live
examples may be more relevant to the learner’s aspirations and interests, facilitating authentic
learning (Shafer and Resnick, 2003). Ideally, the user could generate custom Dynamic Tutorials,
thereby contextualizing a particular high- or medium-level programming plan to a website of
their choice. Facebook examples will provide more context to a learner v.s. an isolated example
from a tutorial.

Methodology
We aim to answer the following research questions:
1. Do real-world worked examples of programming techniques increase learners’ rates of
knowledge transfer, compared with sandboxed tutorials?
2. Do multiple real-world examples increase learners’ rates of knowledge transfer,
compared with only one real-world example of a programming recipe?
We define “rate of knowledge transfer” to mean “the rate at which learners successfully apply
the general recipe to a new case.”

We plan to spend 4-6 weeks developing the Dynamic Tutorials system using
JavaScript-based technologies. During this time, we will also iteratively prototype and refine the
user interface for the system, based on user testing with a group of learners. We will begin user
testing this coming week, but will need funding to compensate learners for long-term



Dynamic Tutorials: Creating Readily-Available Worked Examples for Novice Programmers

participation from our recruited group of learners in our design process. We will recruit 5-6
long-term participants will have experience with HTML and basic JavaScript, but minimal to no
prior experience with AngularJS. They will be testing our interface. We will iterate upon our
system with the help of our long-term participants who will help test our system for usability and
intuitive design.

In the following 4 weeks after development has concluded, we will create a set of
Dynamic Tutorials for a programming recipe using web techniques and JavaScript framework
specific techniques, and find a set of comparable traditional tutorials. [Student One] will develop
the back-end system to the tutorial, while [Student Two] will focus on creating and designing the
interface learners will interact with. Back-end tasks, which will be completed by [Student One],
will include setting up a server, creating hooks to search and retrieve content from websites. The
interface, built by [Student Two], will include thinking of the design affordances our tutorial will
have and how to layout the features. To have a statistically-valid study, we will need to test with
at least 25-30 learners; each learner requires a hour of a highly involved study. By having two
people we will be able to get statistically-valid results by conducting the study with more
learners. We will meet weekly with Dr. [Faculty Mentor] to plan the work throughout the next
two quarters. Once we have a interface, we will conduct a user study. We will conduct a user
study with 25-30 new undergraduates, who have the same background as our long-term
participants. Undergraduates will be recruited from several sources, including EECS 111, EECS
330, and web development related student groups.

Our study will have four conditions: the participant is given one real-world Dynamic
Tutorial, one sandbox traditional tutorial, two real-world Dynamic Tutorials, or two sandbox
traditional tutorials. Participants will be randomly assigned to a condition.

Each participant will work through their provided tutorial(s), and then complete an
exercise consisting of a blank version of the Dynamic Tutorial and a hypothetical context. We
will evaluate how the users are able to translate skills learned from the tutorial to a mock
scenario where they will be building what they’ve learned from their tutorial. We will also be
conducting observations during the study examining how the participants navigate the different
tutorial conditions. We will evaluate whether or not learners are able to complete tasks in the
mock scenario. During the observations, we will be focusing on how users are interacting with
the tutorial. We will also get subjective feedback from users, asking them to rate how they liked
the tutorial, and if they felt like they learned better from the Dynamic Tutorial. We will analyze
the subjective and objective evaluations from the different user conditions to see if Dynamic
Tutorials have better learning outcomes for users, and if users felt more empowered and enjoyed
using Dynamic Tutorials more.

We both have previous experience in conducting Human-Computer Interaction research
and understanding Human-Computer Interaction principles with Dr. [Faculty Mentor]. [Student
One] is currently the TA for EECS 330: Human-Computer Interaction. [Student One] has had
experience deploying app systems during previous internships at Groupon and AT&T and have
experience through her interfaces classes at Northwestern. [Student Two] has built many front-
end applications with various web frameworks. As a TA for EECS 111: Fundamentals of
Computer Programming, she is familiar with the learning needs of novice and intermediate-level
programmers. We will submit the results of our research in the form of a conference paper at the
end of the quarter or next quarter. This experience will support our long-term goals of attending
graduate Computer Science programs.



Dynamic Tutorials: Creating Readily-Available Worked Examples for Novice Programmers

Works Cited
Brandt, J., Dontcheva, M., Weskamp, M., and Klemmer, S.R. Example-centric programming;:

integrating web search into the development environment. Proceedings of CHI 2010,
ACM (2010), 513-522.

Brandt, J., Guo, P.J., Lewenstein, J., Dontcheva, M., and Klemmer, S.R. Two studies of
opportunistic programming: interleaving web foraging, learning, and writing code.
Proceedings of CHI 2009, ACM (2009), 1589-1598.

Catrambone, R. & Holyoak, K. J. (1989) Overcoming contextual limitations on problem-solving
transfer. Journal of Experimental Psychology 15:6, 1147-1156.

Gentner, D., Loewenstein, J., & Thompson, L. (2004). Analogical encoding: Facilitating
knowledge transfer and integration. Proceedings of the Twenty-Sixth Annual Conference
of the Cognitive Science Society, 452-457.

Gentner, D., & Rattermann, M. J. (1991). Language and the career of similarity. In S. A. Gelman
& J. P. Byrnes (Eds.), Perspectives on language and thought: Interrelations in
development (pp. 225-277). London: Cambridge University Press.

Gick, M. L., & Holyoak, K. J. (1982). Schema induction and analogical transfer. Cognitive
Psychology 15:1, 1-38.

Shaffer, D. W., & Resnick, M. (1999). "Thick" Authenticity: New Media and Authentic
Learning. Journal of Interactive Learning Research 10:2, 195-215.





